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The diffraction of a shock of arbitrary strength by a plane interface separating two 
different fluids may be calculated for the general case. The restriction encountered in 
earlier work on a limiting maximum difference in shock velocities in the two media has 
been removed by a treatment at the interface which does not depend upon Whitham’s 
method. Instead, the shock shape at the fluid discontinuity is determined simultaneously 
with the local wave system to ensure continuity of both pressure and normal fluid 
velocity. An example is presented for the propagation of a shock front of Mach number 8 
past an ocean surface. It is shown that for later times, the shock shape becomes tangent 
to the interface with decreasing strength there. 

1. INTRODUCTION 

This work generalizes the solution for the propagation of a shock front of 
arbitrary strength and shape into a region containing two different fluids separated 
by an interface parallel to the shock motion. In earlier work [l] the shape and 
strength of the diffracting shock wave, and the flow properties immediately behind 
the shock front, were determined by the method of Whitham [4]. In Whitham’s 
method, one applies the characteristic equation, which holds along the positive 
characteristic behind the shock wave, to the flow quantities at the shock wave 
itself. Since the latter are known in terms of the shock strength from the Rankine- 
Hugoniot shock conditions, the substitution leads to an equation for the variation 
of shock strength. The solutions obtained in the earlier work [I] were limited 
to a maximum difference in shock velocity in the two fluids of 30 %. This limitation 
was mainly due to the increasing contribution of secondary wave reflections at 
the interface for large differences in fluid properties across the free surface. In the 
present investigation, a generalized treatment at the interface independent of 
Whitham’s method successfully removes this restriction. The work is considered 
as the first step towards the general problem of shock propagation into an 
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inhomogeneous fluid. A calculation is presented for shock propagation past an 
ocean surface, with shock velocities in air and water differing by approximately 
250 %. The jump conditions across a strong shock front in water are derived in 
the accompanying Appendix. 

2. DIFFRACTION OF TRANSMITTED WAVE 

A plane shock arrives at t = 0 at a contact discontinuity separating two dissimilar 
fluids (Fig. 1). A shock wave is transmitted into the two fluids and subsequently 
diffracts. A reflected wave travels upstream and is not considered here. The strength 
of the transmitted wave may be calculated in terms of pressure ratio across the 
incident shock and the sound speed and specific heat ratio in the two fluids. 
These details are given in Ref. [l]. 

The flow field behind the diffracted shock front is computed at the points of 
intersection of the physical characteristics dj3jda = &C, where 01 and /3 are 
curvilinear axes perpendicular and tangent, respectively, to the moving shock front, 

The flow field at a general point (x uI , y,,,) at time tm may then be calculated 
from the properties at two earlier points (x1 , vr) and (3cn , yrr) in terms of the 
shock Mach number M, and angle of inclination 6’ between the local normal to 
the shock and the undisturbed free surface, using the following finite difference 
relations: 

(i) Along Cf characteristics, 

YIII - YII = Py+(h - h), 

XIII - XII = Ps+(fIII - h), 

(ii) Along C- characteristics, 

YIII - YI = ~l,-(hI - tr), 

XIII - XI = ~&III - 4), 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) en, - 4 = +wm - Jw/~--, 
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where 

P,- = (44 sin 0 - N cos 0) a, (2.7) 

PI- = (M cos 6’ + N sin 0) a, (2.8) 

P,+ = (M sin 0 + N cos 0) a, (2.9) 

P,+ = (M cos 0 - N sin 6) a, (2.10) 

N = [; (M2 - f2, 

K(M) = 2 [(l + -+ 7) (2/L + 1 + M-q (2.12) 

and 
(y-l)M2-t2 

~2=2yML((y- 1)’ 

The overbar indicates that the quantity has been averaged over the appropriate 
plus or minus characteristic. 

3. COMPUTATION OF FLOW FIELD 

3.1. Singularity at Interface at t = 0 

A mathematical singularity exists at the interface at t = 0, since the shock 
velocities of the transmitted waves are discontinuous there. In order to treat 

UPPER MEDIUM 

LOWER MEDIUM 

FIG. 1. Initial configuration with singularity. 
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the singularity, one solves the system composed of points (I, II, III) and (I’, II’, III’) 
simultaneously, in terms of the Mach number and inclination angles which are 
unknown at the singularity (see Fig. 1). 

The characteristic relations (2.1)-(2.6) simplify for y = 0, t = 0, where 8 = 0, 
x = 0. Equations (2.2) and (2.5) in reduced form combine to provide two relations 
between M and 0 at the new points III and III’, 

MI1 cos 011 - N,, sin t$i = MI + 2NIII sin 0,,, , (3.1) 

MI, cos 01, + NI, sin 8,~ = M,,, - 2Nm sin 8,,,r . (3.2) 

Four additional relations are derived from Eqs. (2.3) and (2.6) which apply both 
at points III and III’. The shock velocity must be continuous across the interface, 
and this yields a seventh relation 

(3.3) 

for the eight unknowns Mn , Bn , MI, , 8,~ , Mm , I& , Mm* , B,n . The last 
relation must derive from the condition of continuity of pressure and velocity 
across the interface. 

3.2. Flow Field in Interior Region 

A nonlinear equation for Mm may be obtained by eliminating 0,,, from 
Eqs. (2.3) and (2.6), 

Mm(N+ + N-) - MIN.+ - M,,N- - (OrI - 0,) N- N+ = 0, (3.4) 

where N* has been averaged along the C* characteristics, respectively. The 
iterative solution of Eq. (3.4) yields MuI , and enI follows from Eq. (2.3) or (2.6). 

At each new shock position, points III are calculated for a specified time ts 
to facilitate location of the shock front which is a locus of points of constant 
time. The time tIII is calculated as an arithmetic mean by Eqs. (2.1) and (2.4), 
with P, given by (2.7) and (2.9). If tIII is not equal to the prespecified time ts , 
the data point farther from the free surface (point I in the upper medium or 
point II in the lower medium) is adjusted along the shock front and the computation 
repeated until tIII equals ts . Ten to fifteen iterations have been found sufficient. 

The calculation of interior points is continued up to the boundary with the 
uniform region. At the boundary, the method described above breaks down. 
In this case, it is necessary to fix the point farther from the interface and adjust 
the nearer point until convergence. 
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3.3. General Interface Points 

Whitham’s technique is not valid at the interface due to the increased importance 
of secondary wave reflections there. 

By Lagrangian interpolation, one extends the shock front in the upper medium 
through the points 0 and I (see Fig. 2) determined from the interior calculation 
of the previous section and an assumed point II on the interface. The shock front 

0 

Ik \ 
PU.6” \ \ 

\ x 
II\. 

INTERFACE BEHIND J’ 
SHOCK 

WAVE 
UNIFORM 

SHOCK 

I REGION 
BEHIND SHOCK 

FIG. 2. Wave system for interface calculation. 

is similarly extended in the lower medium through points 0’ and II’ to the same 
point I’@) on the interface. The shock inclinations tin and 6r, are determined 
from the interpolated curves. 

The shock front travels with nearly constant speed us along the interface [l], 
so that in terms of the shock coordinate xi1 (=x1,) at the interface, 

u = 2 = MrIaII Ww s -=- 
tn cos 011 cos 4, (3.5) 

from Eq. (3.3). Equation (3.5) provides two relations for the solutions of M,, and 
MI/ in terms of the specified time tII (=tI, = ts). 

The pressure and normal component of fluid velocity can be made continuous 
across the interface by fitting in an unsteady expansion fan at the interface behind 
the shock in the higher pressure medium. The details of this local expansion 
have been described in Ref. [I]. The continuity and momentum equations, in 
terms of the moving origin I’, are integrated through the expansion wave until 
the fluid pressure drops to the value behind the shock at the interface in the 
lower pressure medium. The local position of the disturbed interface is then 
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determined for the smallest difference in stream angles 6, and 6, (Fig. 2). If the 
stream directions are not closely matched, the interface coordinate xl1 (=x1,) 
must be reestimated for a minimum difference in stream angles (Golden Section 
Method [3]). The computation is repeated until both pressure and fluid velocity 
are continuous across the disturbed interface, the position of which is determined 
in the course of this matching procedure. 

4. RESULTS AND DISCUSSION 

Results are presented here for the propagation of an initially plane shock of 
Mach number Mi = 8 along an ocean surface. The strengths of the initial and 
transmitted shock fronts are shown in Fig. 3. 
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FIG. 3. Initial and transmitted shock wave at time I = 0 (250 % difference in shock velocities). 
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As no characteristic length or time scale enters the problem, the shock profile 
must evolve from its initial shape, containing a singularity at t = 0, to a self- 
similar profile. Figure 4 shows that the shock developed in the water attains this 

@I t= 3xW4SEC 
,, t = 8x 10.’ SEC 
0 t = 14x10-*SEC 
A t = 18x10+SEC 
V t = 24~10-~SEC 

FIG. 4. Shape of diffracted shock. 

invariant profile in about 8 x 1O-4 set, with longer times required in the air. 
In the neighborhood of the interface, the air shock approaches the tangent to 
the free surface, with an almost constant velocity of propagation along the interface 
(Fig. 5) of approximately 21,000 ft/sec during the time interval 25 x 1O-4 sec. 

The variation in pressure behind the shock is plotted in Fig. 6. The water shock 
appears to exhibit smaller changes in curvature than the air shock. Accordingly, 
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FIG. 5. Shock propagation along an ocean surface. 
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FIG. 6. Pressure variation behind diffracted shock. 
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the pressure distribution behind the shock in the water shows a threefold variation, 
with a minimum of IO* lb/fP occurring at the interface. The air shock however, is, 
much more distorted with a corresponding 30-fold pressure variation from 
12.2 x lo4 Ib/fP behind the uniform shock to a minimum of 0.43 x IO4 psi 
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FIG. 7. Variation of fluid density behind diffracted shock. 
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FIG. 8. Horizontal component of fluid velocity behind shock. 
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TABLE I 

Pressure and Inclination of Ocean Surface Behind Shock 

(10-f xc) 
&I 6, 

(degrees) (degrees) 
p* 

(lo3 lb/fF) 

0 14.378 14.386 403.14 403.14 
5 16.445 16.472 106.65 106.69 

10 11.194 11.190 54.643 54.643 
15 7.2101 7.2240 25.782 25.737 
20 3.7119 3.7032 9.8673 9.8330 
24 1.5060 1.5097 4.2891 4.2891 
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9. Variation of shock inclination and Mach number along ocean surface. FIG. 
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at the interface. An expansion fan develops to render the pressure continuous 
across the free surface. 

The fluid density (Fig. 7) is almost constant in the water at 81.5 lb/ft3 and 
drops to a sharp minimum at the interface under the influence of the expansion fan. 
The air density falls from a value of approximately 0.45 Ib/ft3 behind the uniform 
shock to a minimum of 0.15 lbjft at the free surface. 

The horizontal component of fluid velocity behind the shock is plotted in Fig. 8. 
An expansion fan behind the shock at the free surface assures continuity of 
streamline direction at y = 0. 

The conditions of continuity of pressure p and stream angle 6 have been satisfied 
at each point along the air-water interface as the shock passes. Table I indicates 
the very close agreement on both sides of the interface. 

The shock front decreases rapidly in strength near the ocean surface. Although 
the air and water shocks join at the interface, nonetheless, the local slopes are 
discontinuous there. The shock inclination and shock Mach number are shown 
for both the air and water in Fig. 9 as a function of shock distance along the 
ocean surface. Apparently these values approach a constant limit asymptotically 
for distance along the ocean surface in excess of 50 ft. 

At the free surface itself, the shock angle in the air approaches the tangent 
to the surface. In order to maintain the same velocity M&OS 0 past the surface, 

TABLE II 

Shape, Strength, and Inclination Angle of Shock 

t 
(IO+ set) 

Ii4 I9 
(degrees) 

4 3.0676 3.3400 6.8839 0 
4 5.8364 I .2209 7.8682 55.128 
4 8.2722 0.0 3.2674 39.406 
4 9.6062 -2.3910 4.7680 14.007 
4 10.744 -8.3460 5.4922 0 

13 9.9695 9.7358 6.8839 0.0 
13 23.732 1.0131 4.3397 74.424 
13 28.943 -0.96134 3.5210 45.720 
13 31.091 -4.1948 4.3077 24.417 
13 34.917 -22.428 5.4922 0.0 
24 18.405 17.289 6.8839 0.0 
24 45.082 0.75048 1.8703 82.716 
24 52.554 0.0 1.1317 75.360 
24 56.934 -5.5412 4.2285 26.250 
24 64.462 -39.640 5.4922 0.0 
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it is necessary for the shock Mach number MS to decrease. This accounts for the 
greatly reduced shock strength observed at the ocean surface. 

Table II shows the calculations of shape, strength, and inclination angle of the 
diffracted shock at selected times. 

APPENDIX. SHOCK CONDITION IN WATER 

Denoting shock velocity by V and fluid velocity by u, the conservation of mass, 
momentum, and energy across a plane normal shock may be expressed, respectively, 
as 

PiJJ = pw - 4, P -Po = POVU, e - e. = (p. + PNP - P~)/~PP~ , (A.11 

in terms of density p, pressure p, and internal energy e, where the zero subscript 
refers to upstream conditions. 

From the first two relations, one determines the shock and fluid velocities as 
u = {P(P - Po)lPo(P - POW23 u = HP - P~)(P - P~)/PP~Y~. G4.2) 

The equation of state of water at high pressure has been given by Tamman [2] 
in terms of temperature T as 

(P + P&P = KT, (A.3) 

where pc = 3000 atm, K = 6690 ft-lb/OR. 
The internal energy of water is 

e - e. = CAT - To) + pe (i - -/--), 

where C, is an average specific heat at constant volume given by 

C, = /rOAdT (A.5) 

Temperature T may be eliminated from Eqs. (A.3) and (A.4) to yield 

e - e. = WWP + PJP - (PO + pdl~~~ + PC (i - $-). 64.6) 

The internal energy may be eliminated between (A.4) and the energy equation 
of (A.l) to give the Rankine-Hugoniot relation for water, 

PO-- WV/~> + ll(Po + PCMP + PC) + 1 
P- PC&/K) + 11 + (PO + PMP + PJ 

(7 + 1) E + (Y - 1) 
= (Y - 1) f + (Y + 1) ’ 

(A.7) 
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where 

PO + PC CC=-------, 
P +Pe 

y = 1 + g N 7.15. 
V 

Equation (A.7) reduces to the shock condition for an ideal gas if pc = 0, and 
to the well-known Tait equation for water if the flow is isentropic. Equation (A.2) 
then yields the shock and fluid velocities in water. 
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